Mechanism for accurate, protein-assisted DNA annealing by Deinococcus radiodurans DdrB.
نویسندگان
چکیده
Accurate pairing of DNA strands is essential for repair of DNA double-strand breaks (DSBs). How cells achieve accurate annealing when large regions of single-strand DNA are unpaired has remained unclear despite many efforts focused on understanding proteins, which mediate this process. Here we report the crystal structure of a single-strand annealing protein [DdrB (DNA damage response B)] in complex with a partially annealed DNA intermediate to 2.2 Å. This structure and supporting biochemical data reveal a mechanism for accurate annealing involving DdrB-mediated proofreading of strand complementarity. DdrB promotes high-fidelity annealing by constraining specific bases from unauthorized association and only releases annealed duplex when bound strands are fully complementary. To our knowledge, this mechanism provides the first understanding for how cells achieve accurate, protein-assisted strand annealing under biological conditions that would otherwise favor misannealing.
منابع مشابه
Crystal structure of the DdrB/ssDNA complex from Deinococcus radiodurans reveals a DNA binding surface involving higher-order oligomeric states
The ability of Deinococcus radiodurans to recover from extensive DNA damage is due in part to its ability to efficiently repair its genome, even following severe fragmentation by hundreds of double-strand breaks. The single-strand annealing pathway plays an important role early during the recovery process, making use of a protein, DdrB, shown to greatly stimulate ssDNA annealing. Here, we repor...
متن کاملThe deinococcal DdrB protein is involved in an early step of DNA double strand break repair and in plasmid transformation through its single-strand annealing activity.
The Deinococcus radiodurans bacterium exhibits an extreme resistance to ionizing radiation. Here, we investigated the in vivo role of DdrB, a radiation-induced Deinococcus specific protein that was previously shown to exhibit some in vitro properties akin to those of SSB protein from Escherichia coli but also to promote annealing of single stranded DNA. First we report that the deletion of the ...
متن کاملDdrB protein, an alternative Deinococcus radiodurans SSB induced by ionizing radiation.
Deinococcus radiodurans exhibits an extraordinary resistance to the effects of exposure to ionizing radiation (IR). DdrB is one of five proteins induced to high levels in Deinococcus following extreme IR exposure and that play a demonstrable role in genome reconstitution. Although homology is limited, DdrB is a bacterial single-stranded DNA-binding protein. DdrB features a stable core with a pu...
متن کاملSingle Strand Annealing Plays a Major Role in RecA-Independent Recombination between Repeated Sequences in the Radioresistant Deinococcus radiodurans Bacterium
The bacterium Deinococcus radiodurans is one of the most radioresistant organisms known. It is able to reconstruct a functional genome from hundreds of radiation-induced chromosomal fragments. Our work aims to highlight the genes involved in recombination between 438 bp direct repeats separated by intervening sequences of various lengths ranging from 1,479 bp to 10,500 bp to restore a functiona...
متن کاملThe Essential Role of the Deinococcus radiodurans ssb Gene in Cell Survival and Radiation Tolerance
Recent evidence has implicated single-stranded DNA-binding protein (SSB) expression level as an important factor in microbial radiation resistance. The genome of the extremely radiation resistant bacterium Deinococcus radiodurans contains genes for two SSB homologs: the homodimeric, canonical Ssb, encoded by the gene ssb, and a novel pentameric protein encoded by the gene ddrB. ddrB is highly i...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Proceedings of the National Academy of Sciences of the United States of America
دوره 113 16 شماره
صفحات -
تاریخ انتشار 2016